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A B S T R A C T

Efficient monitoring of large crop fields is important to ensure the optimal use of resources such as water
in irrigation policies, but at the same time represents a challenge to determine the structure of the sensor
network. A balance must be accomplished between the acquisition, operation, and maintenance costs of this
sensor network with the amount of information that can be collected in real-time to support the optimal use of
the resource, e.g., an optimal irrigation policy. In this study, a sensor location strategy is proposed based on an
agent-based model (ABM) of the crop–soil system, a state estimation algorithm reconstructing non-measured
variables, and an objective function balancing the convergence of the estimation technique and the costs of the
sensor network. The ABM model describes the crop–soil dynamics and allows conveniently representing uneven
landscapes where water exchanges take place between different portions of the land. Various state estimation
techniques can be considered and an extended Kalman filter is implemented in the present study, whose error
covariance matrix can be exploited to assess practical observability and observer convergence. Finally, an
economic cost function combines the observability measure with the sensor costs in order to select an optimal
or suboptimal sensor array. For validation purposes, a numerical simulation case study, corresponding to a
rugged land located in Colombia, is used to test various scenarios including the variability of climatic inputs.
1. Introduction

The growth of the world population and the increasing demand for
food production has put the focus on the improvement of agricultural
processes. The problem of food production has two facets. On the one
hand, farming procedures must involve proper knowledge of the soil
and crop in the context of climate change. On the other hand, the
overuse of limited resources such as water must be drastically reduced,
considering that agriculture uses about 70% of freshwater worldwide.

Precision agriculture (PA) includes a set of tools and techniques
to deal with the above-mentioned issues while foreseeing efficiency
and sustainability. One of the open challenges in PA is the efficient
management of resources such as water, fertilizer, or herbicides and
the optimal deployment and use of sensors (Cobbenhagen et al., 2021).
In Visalini et al. (2019), for instance, the authors propose an algorithm
for sensor placement where information from low-resolution remote
sensors are fused with proximal sensors connected to a wireless sensor
network (WSN). However, the sensor cost and range, which are af-
fected by weather and farming operation outages, are recurrent issues.
Moreover, when a large set of sensors are deployed in a WSN to
monitor a field, the costs associated with installation and operation
do not decrease with the increasing number of sensors, independently
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of the technology and topology of the network (Thakur et al., 2019).
Hence, the design of systems for monitoring large crops is condi-
tioned by economic constraints and technical limitations. The economic
aspect of sensor location to build efficient crop monitoring systems
has been tackled by combining multiple data sources and statistical
tools (López-Lozano and Baruth, 2019).

Besides the economic limitations, the prediction of the crop–soil
system is critical in water management since the hydrological dynamics
are significantly influenced by the landscape heterogeneity (Gao et al.,
2018) and climate variability (Pelak et al., 2017). One of the possible
approaches to address land variations is agent-based modeling (ABM).
This concept has been successfully used to represent uneven landscapes,
where agents correspond to homogeneous parts of soil (Lopez-Jimenez
et al., 2021). The connections between agents are represented by a
directed graph, where water exchanges occur between nodes. This
framework reduces the complexity of solving the crop-environment
model under climate variability compared to a 2- or 3-dimensional
partial differential equation model.

The general approach to sensor location has been defined as an opti-
mization problem where a sensor configuration achieves the minimum
capital cost while meeting specific performance criteria. In Chmielewski
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et al. (2002), the authors provide a theoretical framework to prove the
feasibility of a distributed observer for nonlinear systems with precision
and detectability constraints. Particularly for the case of nonlinear
systems, observability analysis is a challenge, and indirect assessment
methods are proposed. In Rodriguez et al. (2021), an empirical ob-
servability approach is presented based on the Gramian of measured
variables. The estimation error is evaluated as the trace of the error
covariance matrix. However, the underlying computation becomes
challenging when the number of variables increases (Bwambale et al.,
2022). To address this issue, several algorithmic solutions have been
proposed. For instance, multi-rate discretization, reduction of model
order (Paul et al., 2016), and the use of genetic algorithms (GA) to
minimize the cost function (Abioye et al., 2020). Moreover, the use of
GA in the design of irrigation policies has been reported in Perea et al.
(2019, 2021).

In this study, we focus attention on sensor placement in large crop
fields with land heterogeneity, climatic variability, and limited budget.
A distributed estimator based on an ABM model and an extended
Kalman filter (EKF) is implemented to reconstruct the non-measured
state variables and to formulate an objective function balancing the
EKF performance with the costs of the sensor network. This objective
function is optimized using a genetic algorithm.

More specifically, the main contributions of this work are:

• the design of an agent-based EKF to estimate the state variables
of a heterogeneous crop–soil system;

• the formulation of a sensor placement strategy based on the
covariance matrix of the EKF and various terms accounting for
the sensor costs, exploiting a genetic algorithm to deal with the
problem dimensionality; and

• the application of the methodology to a realistic case study, corre-
sponding to a crop–soil system located in the province of Samacá,
in the department of Boyacá, Colombia, where the agricultural
activity is carried out on rough terrain, and water has a high cost,
highlighting the potential benefits of monitoring and cost savings.

This paper is organized as follows. In Section 2, the underlying
methods are described, i.e., agent-based modeling, EKF estimation, and
genetic algorithm. Section 3 deals with the design of the distributed
state estimator. In Section 4, a case study is presented as a testbed and
numerical results are discussed. Conclusions and future directions are
drawn in the final section.

2. Methods

2.1. Agent-based modeling

Agent-based modeling (ABM) is a methodology used to simulate
interactions between autonomous individuals. An agent is an entity
located in a specific environment and capable of autonomous actions
to meet some objectives (Siegfried, 2014). The complete definition
includes identifiability, a set of non-uniform attributes, asynchronous
interactions, and uncertainty related to parameters or states. Moreover,
an agent has at least two levels of interaction: an upper layer to interact
with other agents and a lower layer to solve internal processes. The first
layer is concerned with interactions with other agents, and the second
one is concerned with the environment. Global behavior emerges from
the combination of individuals.

The ABM shown in this work is intended to predict the evolution of
crop water content in soil and biomass by using local information from
a limited set of sensors. Especially, the model considers environmental
inputs from a meteorological station (either portable or local) located
in close proximity to the cultivation area. Two types of agents are
considered, e.g., crop–soil agents and irrigation agents. The first ones
correspond to a portion of homogeneous soil with a surface of regular
shape, while the second ones are designed for irrigation management.
This model is particularly well suited to represent crop landscapes
2

Table 1
Notation.
𝑁 Number of agents
𝑛 = 1,… , 𝑁 Index of agents
𝑘 Time index
𝑗 Index of environmental inputs
𝑛𝑠 Number of states per agent
𝑛𝑚 Number of sensed patches
𝑛𝑒 Number of environmental inputs
𝑁𝑠 = 𝑛𝑠𝑁 Total number of states
𝑁𝑚 = 𝑛𝑠𝑛𝑚 Total number of measurements
𝑥1 Water content in soil
𝑥2 Cumulative temperature

𝑥3 Cumulative temperature until maturity
to reach 50% radiation interception

𝑥4 Biomass
𝑢 Irrigation
𝑢(1)𝑒 Rainfall
𝑢(2)𝑒 Reference evapotranspiration
𝑢(4)𝑒 Solar radiation
𝐱 Enhanced state vector
𝐅 Linear system matrix
𝐁 Input matrix
𝐂 Measurement matrix
𝐇 Matrix of direct effect of environmental inputs
𝐐 Covariance matrix of system
𝐑 Covariance matrix of measurements
𝑤𝑘 Uncertainties in the process
𝑣𝑘 Uncertainty in measurements
𝜆 Weighting factor of cost function
𝛾 (𝑛) Normalized elevation

with rugged topography where the water exchanges give the inter-
actions between crop–soil agents. The conceptual representation of
the discretized land surface is shown in Fig. 1, where a sample agent
is highlighted with the instrumentation, estimation, and control loop.
The internal structure of crop–soil agents is based on a previous work
focused on the description of the crop–soil dynamics (Lopez-Jimenez
et al., 2021). The list of variables is summarized in Table 1.

The 𝑛 = 1,… , 𝑁 , soil–crop agents are described by a set of 𝑛𝑠 state
variables 𝑥(𝑛)𝑖 , 𝑖 = 1,… , 𝑛𝑠, which are influenced by the 𝑛𝑒 climatic
variables 𝑢(𝑗)𝑒 , 𝑗 = 1,… , 𝑛𝑒, and by the irrigation inputs 𝑢(𝑛). Part of
the state variables can be measured by sensors with output 𝑧(𝑛)𝑖 under
the influence of measurement errors (or noise) 𝑣(𝑛)𝑖 . The irrigation agent
acts as a controller to determine the water delivered to the crop–soil
agents, and 𝑟 represents the amount of water that is available. As
instrumentation is limited, an estimator is required to provide the state
estimates �̂�(𝑛)𝑖 . A description of the variables related to the main blocks
of Fig. 1 is presented next, where the estimator block is described in
Section 2.2.

2.1.1. Crop–soil agents
The dynamic behavior of the crop–soil agents is related to their

internal mechanistic functions, and the coupling with other agents. The
dynamical evolution is described by

�̇�(𝑛) = 𝑓𝑛(𝐱,𝐮𝐞,𝐮𝐜, 𝛩(𝑛)); 𝑛 = 1,… , 𝑁, (1)

where 𝑓𝑛(⋅) is a nonlinear function, 𝐱 corresponds to the vector of state
variables (of all the agents), 𝐮𝐞 is the vector of environmental inputs,
𝐮𝐜 is the vector of management inputs (i.e., irrigation), and 𝛩(𝑛) is the
set of parameters related to the 𝑛th agent, including soil, crop, and
management parameters.

In practice, the control actions will be determined based on infor-
mation that is received at regular time instants 𝑘, and a discrete-time
formulation of the model is more appropriate. In order to discretize the
model, we use the usual sampling interval (1 day). This is motivated by
two reasons: (i) the growing process at the crop scale is assumed to be
affected only by the time course of temperature, which enables the use
of thermal time (degree days above a base temperature) to compute the
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Fig. 1. Conceptual diagram of the ABM with 𝑛 = 1,… , 𝑁 , crop–soil agents, 𝑖 indexing the state variables of each agent, and 𝑗 indexing the environmental inputs. A sample agent
is highlighted to relate the variables and signals of the control loop. The subindex 𝑘 corresponds to the time evolution index.
daily aging of the crop; and (ii) the environmental inputs are available
daily. In a more detailed form, the discrete-time equations of the 𝑛th
agent can be summarized as follows:

𝑥(𝑛)1,𝑘+1 = 𝑥(𝑛)1,𝑘 − 𝜙(𝑛)
1,𝑘 − 𝜙(𝑛)

2,𝑘 − 𝜙(𝑛)
3,𝑘 + 𝜙(𝑛)

4,𝑘 + 𝑢(1)𝑒,𝑘 + 𝑢(𝑛)𝑐,𝑘 (2)

𝑥(𝑛)2,𝑘+1 = 𝑥(𝑛)2,𝑘 + ℎ(𝑛)1,𝑘 (3)

𝑥(𝑛)3,𝑘+1 = 𝑥(𝑛)3,𝑘 + 𝜃(𝑛)11 (1 − ℎ(𝑛)2,𝑘) + 𝜃(𝑛)12 (1 − ℎ(𝑛)3,𝑘) (4)

𝑥(𝑛)4,𝑘+1 = 𝑥(𝑛)4,𝑘 + 𝜃(𝑛)13 ℎ
(𝑛)
6,𝑘ℎ

(𝑛)
7,𝑘ℎ

(𝑛)
8,𝑘𝑔

(𝑛)
𝑘 𝑢(4)𝑒,𝑘, (5)

where the state variables are the water content of every land patch
(𝑥(𝑛)1 ), the cumulative temperature (𝑥(𝑛)2 ), the cumulative temperature
until maturity to reach 50% radiation interception due to leaf senes-
cence (𝑥(𝑛)3 ), and the biomass (𝑥(𝑛)4 ). The fluxes related to the water
balance in soil are the crop transpiration (𝜙(𝑛)

1 ), the surface runoff
(𝜙(𝑛)

2 ), the deep drainage (𝜙(𝑛)
3 ), and the flux coming from the neighbors

located in any highest part of the terrain with respect to the agent (𝜙(𝑛)
4 ).

The independent environmental inputs include the precipitations (𝑢(1)𝑒 )
and the solar radiation (𝑢(4)𝑒 ). The management input is the amount of
water irrigated in every patch (𝑢(𝑛)𝑐 ). The functions ℎ(𝑛) are continuous
or piecewise continuous functions of environmental inputs (𝑢(𝑗)𝑒 ) used to
compute the stress factors, and 𝑔(𝑛) is the growth function. Parameters
𝜃(𝑛)11 , 𝜃(𝑛)12 , and 𝜃(𝑛)13 represent the maximum daily reduction in 𝑥(𝑛)3 due to
heat stress, the maximum daily reduction in 𝑥(𝑛)3 due to drought stress,
and the radiation use efficiency, respectively. The full set of parameters
𝛩(𝑛) includes soil parameters (i.e., 𝜃1 to 𝜃6), thermal crop parameters
(i.e., 𝜃7 to 𝜃16), a parameter to account for the influence of CO2 on the
radiation use efficiency (i.e., 𝜃17), and management parameters (i.e., 𝜃18
to 𝜃20). In particular, the parameters related to crops can be retrieved
from literature sources, the ones related to soil can be measured in situ,
and for those related to crop management, the choice should follow
conservative cropping practices. A complete list of functions, variables,
and parameters is described in Lopez-Jimenez et al. (2021).

The crop transpiration 𝜙1,𝑘 is given by

𝜙1,𝑘 = min(𝜃1(𝑥1,𝑘 − 𝜃2𝜃5), 𝑢
(2)
𝑒,𝑘), (6)

where 𝜃1 is the water uptake coefficient, 𝜃2 is the wilting point, 𝜃5 is
the root-zone depth, and 𝑢(2)𝑒,𝑘 is the reference evapotranspiration.

The drought stress ℎ3,𝑘 can be expressed as

ℎ3,𝑘 = 1 − 𝜃14ℎ4,𝑘, (7)

where 𝜃14 is the sensitivity factor to radiation-use efficiency, and

ℎ4,𝑘 =

⎧

⎪

⎨

⎪

1 − 𝜙1,𝑘
𝑤2,𝑘

, 𝜙1,𝑘 < 𝑢(2)𝑒,𝑘

0, 𝜙1,𝑘 ≥ 𝑢(2) .
3

⎩

𝑒,𝑘
The incoming flux 𝜙4,𝑘 is computed as the sum of the outflows 𝜙𝑜𝑢𝑡,𝑘
from all the neighbors, which have a normalized elevation 𝛾 higher
than the considered agent. The outflow of such an agent is given by

𝜙𝑜𝑢𝑡,𝑘 =

⎧

⎪

⎨

⎪

⎩

(𝑥1,𝑘−𝜃6𝜃5)+𝜙2,𝑘
𝑁𝑟

, 𝑥1,𝑘 > 𝜃6𝜃5

0, 𝑥1,𝑘 ≤ 𝜃6𝜃5,
(8)

where 𝑁𝑟 is the number of receiving neighbors, and 𝜃6 is the field
capacity. Finally, the growth function 𝑔𝑛𝑘 is given by

𝑔𝑛𝑘 =

⎧

⎪

⎨

⎪

⎩

𝜃19
1+𝑒−0.01(𝑥2,𝑘−𝜃20)

, 𝑥2,𝑘 ≤ 𝜃18
2

𝜃19
1+𝑒0.01(𝑥2,𝑘+𝑥3,𝑘−𝜃18)

, 𝑥2,𝑘 > 𝜃18
2 ,

(9)

where 𝜃18 is the cumulative temperature requirement from sowing to
maturity, 𝜃19 is the maximum fraction of radiation interception that a
crop can reach, and 𝜃20 is the cumulative temperature requirement for
leaf area development to intercept 50% of radiation.

2.1.2. Irrigation agent
The objective of this agent is to deliver a water quota to every

crop–soil agent on specific days during the crop season. This agent is
intended to follow an optimal policy. However, as the focus of this work
is on the estimator design, the irrigation agent is only considered to
close the control loop. It can be turned off (𝑢(𝑛)𝑐 = 0, ∀𝑛 ∈ 𝑁) or provide
a fixed quota (𝑢(𝑛)𝑐 = 𝑐, where 𝑐 is a constant), following a traditional
management policy.

2.1.3. Sensor configuration
The sensing technology considered in this work could be either di-

rect or remote. The direct methods include ground sensors, and remote
sensing (RS) is mostly based on images. Images have the advantage of
capturing the whole cropping area and can be calibrated with punctual
measurements of climatic variables either by a meteorological station
in situ or by ground sensors (Wu et al., 2022). However, the daily
availability of images is not guaranteed; instead, ground sensors are
continuously providing data, but the trade-off is that measurements are
restricted to the location of the sensors (Visalini et al., 2019). For every
agent, 𝑛 = 1… , 𝑁 , it is assumed that 𝑛𝑠 state variables can be measured
or estimated based on local information. Therefore, in the distributed
observer context, when an agent is selected as the location for sensing,
all state variables are available at every time 𝑘 either by sensor fusion
or direct RS. The sensor equation for every agent is

𝐳(𝑛)𝑘 = 𝐂(𝑛)𝐱(𝑛)𝑘 +𝐇(𝑛)𝐮(𝑛)𝑒,𝑘 + 𝐯(𝑛)𝑘 , (10)

where 𝐳(𝑛)𝑘 is the vector of sensor outputs, 𝐂(𝑛) is the measurement ma-
trix, 𝐇(𝑛) is the matrix associated with the direct effect of environmental
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inputs, such as rainfall and air temperature, on outputs such as water
in the soil, and 𝐯(𝑛)𝑘 is a vector that represents the measurements errors.
n this work, the measurement noise is assumed to follow a normal
istribution with a covariance matrix 𝐑(𝑛)

𝑘 . All measurements are as-
sumed uncorrelated. In practice, the measurement of water in soil 𝑥(𝑛)1,𝑘
is directly influenced by rainfall, the measurement of 𝑥(𝑛)4,𝑘, i.e., above-
round biomass, is directly influenced by solar radiation, while the
wo other states, i.e., cumulative temperature 𝑥(𝑛)2,𝑘 and cumulative

temperature until maturity 𝑥(𝑛)3,𝑘, are influenced by the air temperature.
or the latter, environmental inputs have an indirect effect since they
hange the stress factors.

Since the meteorological conditions have a significant impact on the
oil–crop behavior (Rossello et al., 2019), 𝐮𝑒,𝑘 is assumed to be collected
aily for the full area of the field.

.2. State estimation approach

As mentioned before, the agents are sharing information through
he water exchanges. These exchanges are driven by the location of
very agent concerning their neighbors accordingly to the topography
f the terrain and the soil properties. A directed graph  = ( , ) is

proposed to track the information inside the model. There,  represents
a set of 𝑁 nodes (one per every agent) and  is given by the incoming
flux from neighbors 𝜙(𝑛)

𝑜𝑢𝑡,𝑘. Notice that 𝜙(𝑛)
4 =

∑

𝜙(𝑛)
𝑜𝑢𝑡,𝑘 in Eq. (2).

To estimate the states of all agents using a limited number of sensing
locations, a custom version of the extended Kalman filter (EKF) is
proposed. This version is adapted from the Kalman filter algorithm
presented in Jiang et al. (2017). The discretization and time update
are assumed to be one day for practical purposes. Considering the
representation of the entire field given by an assembled nonlinear
model as

𝐱𝑘+1 = 𝑓 (𝐱𝑘,𝐮𝐞,𝑘,𝐮𝑐,𝑘, 𝛩), (11)

where 𝐱 = [𝑥(1)1 , 𝑥(1)2 , 𝑥(1)3 , 𝑥(1)4 ,… , 𝑥(𝑁)
1 , 𝑥(𝑁)

2 , 𝑥(𝑁)
3 , 𝑥(𝑁)

4 ]⊤, Eq. (11) can be
linearized along the estimated trajectory, and to this end, the Jacobian
matrix is obtained by partial differentiation, i.e.,

𝐅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹 (1) ⋯ [0] … [0]
⋮ ⋱ ⋮ ⋮
[0] ⋯ 𝐹 (𝑛) ⋯ [0]
⋮ ⋮ ⋱ ⋮
[0] ⋯ [0] ⋯ 𝐹 (𝑁)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

where 𝐹 (𝑛) represents the Jacobian matrix per crop–soil agent.
Including the measurement equation, the field system becomes

𝐱𝑘+1 =𝐅𝐱𝑘 + 𝐁𝐮𝑘 + 𝐰𝑘, (12)

𝐳𝑘 =𝐂𝐱𝑘 +𝐇𝐮𝑘 + 𝐯𝑘, (13)

where 𝐱 ∈ R𝑁𝑠 is the global vector of states, 𝐮 ∈ R𝑛𝑒 represents the
vector of manipulated and environmental inputs, 𝐳 ∈ R𝑁𝑚 is the vector
of measured variables, 𝐅 ∈ R𝑁𝑠×𝑁𝑠 and 𝐁 ∈ R𝑁𝑠×𝑛𝑒 are system matrices,
𝐂 ∈ R𝑁𝑚×𝑁𝑠 is the measurement matrix, and 𝐇 ∈ R𝑁𝑠×𝑛𝑒 is the matrix
of direct effect of environmental inputs on outputs. 𝐰𝑘 represents
perturbations and unmodeled processes dynamics and is assumed to
be Gaussian with zero mean and covariance matrix 𝐐𝑝 ∈ R𝑁𝑠×𝑁𝑠 .
Measurements are susceptible to noise 𝐯𝑘, which is also assumed to be
Gaussian with zero mean and covariance matrix 𝐑 ∈ R𝑁𝑚×𝑁𝑚 . 𝐰𝑘 and
𝐯𝑘 are assumed to be uncorrelated. Notice that 𝐁𝐮𝑘 = 𝐁𝑐𝐮𝑐,𝑘 + 𝐁𝑒𝐮𝑒,𝑘
encompasses the management and environmental inputs.

The recursive algorithm of the filter begins with the initialization of
the state �̂�0, and the error covariance matrix 𝐏0 given by

𝐸[𝐱0] = �̂�0; 𝐏0 = 𝐸[(𝐱0 − �̂�0)(𝐱0 − �̂�0)⊤].

The algorithm starts with a prediction (or time update) step:

̂− ̂ (𝑛) (𝑛)
4

𝐱𝑘 = 𝑓 (𝐱𝑘−1,𝐰𝑘,𝐮𝑘 , 𝛩 ) (14)
𝐏−
𝑘 = 𝐅𝑘−1𝐏𝐅⊤

𝑘−1 +𝐐𝑘−1, (15)

where the super index − denotes the prior estimates and 𝐐 is the
adjusted system covariance matrix as described later. Then, a correction
(or measurement update) step is applied using,

𝐊𝑘 = 𝐏−
𝑘𝐂

⊤
𝑘 [𝐂𝑘𝐏−

𝑘𝐂
⊤
𝑘 + 𝐑𝑘]−1, (16)

�̂�𝑘 = �̂�−𝑘 +𝐊𝑘[𝐳𝑘 − 𝐂𝑘�̂�−𝑘 ], (17)

𝑘 = [𝐈 −𝐊𝑘𝐂𝑘]𝐏−
𝑘 . (18)

Due to the assembled Jacobian of the state space, 𝐅 is independent
f the incoming fluxes 𝜙(𝑛)

4 , and the links between agents are lost.
herefore, to compensate for such loss of connectivity, we define

= 𝐐𝑝 +𝐐𝑔 . (19)

𝑝 is a diagonal matrix of the variances of the environmental inputs,
hich are the most relevant for each one of the state variables, and
𝑔 is the weighted adjacency matrix of the graph , which indirectly

akes the missing fluxes 𝜙(𝑛)
4 into account. The weighting factor for

very element in 𝐐𝑔 is the maximum reported value in the previous
rop season for the selected location. These values are mapped in the

matrix as 𝑓 (𝜙4). Therefore, the adjusted covariance matrix is given
y
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here 𝑉 [𝑢1𝑒 ], 𝑉 [𝑢3𝑒 ], 𝑉 [𝑢6𝑒 ], and 𝑉 [𝑢4𝑒 ] are the variances of the rainfall,
ir temperature, maximum daily temperature, and daily solar radiation,
espectively.

Based on the procedure to generate the matrices related to mea-
urements proposed by Kadu et al. (2008), matrices 𝐂𝑘 and 𝐑𝑘 are
alculated as follows:

̃𝑘 =
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⎣

𝛿1,𝑘 . 0 . 0
. . . . .
0 . 𝛿𝑖,𝑘 . 0
. . . . .
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𝑐𝑖1 . 𝑐𝑖𝑗 . 𝑐𝑖𝑁
. . . . .
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here 𝑐𝑖𝑗 is the constant that relates the 𝑗𝑡ℎ state to the 𝑖𝑡ℎ measurement,
nd 𝜎2𝑖 is the variance associated with the 𝑖𝑡ℎ sensor. The variable

𝛿𝑖,𝑘 = 1 if the sensor location is active, and 𝛿𝑖,𝑘 = 0 otherwise. As the
ocation of patches can change over time due to the search for the best
uality of estimation, an operator shape removes zero rows from its
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a

Fig. 2. Flowchart of the algorithm for the location of sensors.
rgument, ensuring the appropriate size for 𝐂𝑘 and 𝐑𝑘, The operator
over �̃�𝑘 and �̃�𝑘 is defined as,

𝐂𝑘 =𝑠ℎ𝑎𝑝𝑒{�̃�𝑘} (20)

𝐑𝑘 =𝑠ℎ𝑎𝑝𝑒{�̃�𝑘}. (21)

Notice that the four state variables of each agent are measured when
a sensor location is active. On the contrary, if the site is not active, the
four states of the corresponding agent must be estimated.

3. Sensor location and distributed observer

The proposed approach follows the flow diagram shown in Fig. 2.
It begins with the choice of the field and crop. The selected terrain
is represented by a 3D model, where the normalized elevation corre-
sponds to a difference between the highest and the lowest altitude. This
representation is built by applying image processing algorithms and a
digital elevation model (DEM) (Mukherjee et al., 2013). Afterward, the
crop choice and soil type determine the values of vector 𝛩.
5

The discretization of the field has the objective of determining the
number of agents 𝑁 that properly represent the changes in the soil
dynamics due to water fluxes. For this purpose, we use the error of
estimation of biomass. This error is computed as the difference between
the production with the minimum patch size (1 m2) and the production
with a bigger patch size. In the resultant grid, every cell becomes a
crop–soil agent. The ABM is assembled as described in Section 2, where
the dynamics of every patch are linked to the 𝑛𝑠 state variables.

To assemble and run the ABM, it is necessary to incorporate the
environmental inputs and define what variables could be measured
and which ones should be estimated. Subsequently, the number of
sensors (𝑛𝑚) and their distribution in the field should be selected. These
locations are used in the sensor equation.

The model is executed after collecting data from sensors and their
incorporation into the ABM. This covers the execution of the EKF
described in the previous section. Later, an optimization procedure is
performed to find the best set of locations with the outcome of prior
steps.
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Fig. 3. Graphical representation of the compromises in the objective function.

3.1. Decision criteria

To decide where to locate the sensors, two aspects are considered:
the quality of the information obtained with these sensors, and their
installation and operation costs. Fig. 3 shows a graphical description of
the decision criteria based on the number of sensing points and their
location. The left axis shows the quality of estimation related to the
estimation error, which decreases as the number of sensors increases.
On the right axis, the cost of sensors is depicted, and it is directly
proportional to the amount of devices needed. The two components
are inspired by the general procedure of a multiobjective optimization
proposed by Kadu et al. (2008). These two elements are combined in
a single cost function. However, the units and scales are not the same,
and therefore, additional compensation elements are added. Moreover,
a penalization factor 𝜆 is included to prioritize one objective over the
other.

The optimization problem can be formulated as follows:

min
𝑞

𝑇
∑

𝑘=1
[𝑡𝑟𝑎𝑐𝑒{𝑃𝑘}] + 𝜆

[ 𝑛𝑚
∑

𝑖=1
𝐹𝑐𝑖 +

𝑇
∑

𝑘=1

𝑛𝑚
∑

𝑖=1
𝛿𝑖𝑘𝑂𝑖

]

(22a)

s.t. 𝑞 ∈ 𝑀 (22b)

𝑛𝑚 < 𝑁, (22c)

where, the decision variable 𝑞 = {𝑚1, 𝑚2,… , 𝑚𝑛𝑚} is one of the possible
locations vector picked from 𝑀 = {𝑞1, 𝑞2,… , 𝑞2𝑁 }, which is the vector
of all possible combinations of sensor locations on the field. Notice
that 𝑞 is a set of integers. The term ∑𝑇

𝑘=1[𝑡𝑟𝑎𝑐𝑒{𝑃𝑘}] provides a scalar
measure of estimation quality. A large value of this term indicates poor
quality of estimate or large uncertainty in the state estimation. The
second term on the right side of Eq. (22a) stands for the scalar measure
of sensing cost, which is calculated as the sum of the installation cost
and the operating cost. 𝐹𝑐𝑖 and 𝑂𝑖 represent the installation cost and
operating cost for the 𝑖𝑡ℎ sensor, respectively. The variable 𝛿𝑖𝑘 ∈ {0, 1}
is defined as in previous section. 𝜆 is a weighting factor for balance
profitability, scaling, and matching units. Considering the features
of the optimization problem as the combinatorial multiobjective cost
function with integer decision variables, a genetic algorithm (GA) is
proposed to solve the placement problem. The steps and considerations
are discussed next.

3.2. Genetic optimization algorithm

Genetic algorithms (GA) are search and optimization techniques
based on genetics and natural selection principles (Katoch et al., 2021).
GA is built on a set of individuals and different types of rules or genetic
operators in the population. The iterative procedure of GA is as follows.
First, a population of individuals with a particular structure is created.
In this step, the key is the encoding of information in the structure of
the individual (i.e., the definition of chromosomes). Second, a set of
operators introduce changes in the population (i.e., selection, crossover,
6

Fig. 4. Codification of sensor locations into a chromosome. The number of ones in the
chromosome is 𝑛𝑚.

mutation). Third, the fitness of the population members is evaluated
and the best ranked are selected keeping constant the number of
individuals through the iterations. This sequence of steps is repeated
until the algorithm meets a stopping criterion (e.g., the maximum
number of iterations is reached, the fitness value does not change after
a finite number of iterations, or the change in fitness value between
consecutive iterations is below a threshold).

The GA is used in this work for its advantages in dealing with non-
convex cost functions, the minimal information required to start the
search, and the enhanced space exploration. However, this solution
methodology can have limitations in terms of its computational speed,
issues related to convergence, and the appropriate selection of initial
values. Moreover, there is no rigorous guarantee that the solution
reaches optimal values.

As mentioned before, the initial step in implementing the GA is the
definition of the population and encoding information. Every individual
in the population has a unique chromosome. The codification of the
information in such chromosomes provides the possible location of
sensors. Thus, every chromosome has 𝑁 binary positions of length.
When the particular location is active, the value of this position in the
chromosome is one and zero on the contrary. This specific combination
of ones and zeros in a candidate chromosome is what we call 𝑞, as
shown in Fig. 4.

This study employs three distinct genetic operators, namely elitism,
crossover, and mutation, as outlined by Konak et al. (2006). The initial
value represents a positive integer that indicates the number of individ-
uals in the present generation that are ensured to live and reproduce
in the subsequent generation. The second parameter is the proportion
of chromosomes contributed by each selected parent in the population,
excluding elite offspring, which are utilized by the crossover function to
generate novel individuals. The mutation is a crucial component of the
genetic algorithm, as it involves introducing minor random alterations
to individuals within the population, hence giving rise to mutation
offspring. This operator facilitates the introduction of genetic diversity,
hence expanding the search field for the genetic algorithm. In this
study, the setup of these operators is achieved using MATLAB.

The computational complexity of solving the optimization problem
is directly linked to the available sensing locations and the size of
the population. The number of computations is related to the scale
of the possible locations by 2𝑁 , and it is related to the size of the
chromosome. However, the number of individuals in the population is
a fixed number. As the assessment of the genetic algorithm to generate
new feasible locations is directly related to the computations between
members of the population and the population does not change along
the solving process, the effect on the complexity is merely arithmetic.
For this work, a population of 50 individuals was used in all tests.
This size is determined by multiple trials pursuing a balance between
computational burden and changes in the population in every iteration

of the algorithm.
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3.3. Practical observability

As the sensor number and location are investigated, the question of
system observability is crucial. A system is said to be observable if the
state vector can be estimated using the available output measurements
over a finite time period. Observability is a structural property of linear
systems but also depends on the input signals for nonlinear systems.
Several methods and dedicated software have been proposed for the ob-
servability analysis of nonlinear systems (see for instance Díaz-Seoane
et al., 2023; Stigter and Joubert, 2021) but the piecewise continuity
and nonlinearity of the ABM model, combined with its distributed
nature, make the application of these methods difficult. To alleviate
this difficulty, a practical observability criterion is proposed instead.

Structural observability tests, in addition to being difficult to apply
to our ABM model, also have the disadvantage of providing a yes or
no answer, without giving an insight into the degree of observability
of the system. Such an insight is however provided by the exami-
nation of the error covariance matrix of the Kalman filter. The idea
of analyzing the properties of this matrix traces back to the work
of Ham and Brown (1983) which highlights the interpretation of the
eigenvalues and eigenvectors. In the present study, we make use of
the trace of the covariance matrix of the estimation error produced by
the Kalman filter. The decreasing value of the trace over time ensures
the consistency of the estimator in the spirit of the minimum variance
achieved by Kalman filtering. Alternative quantifiers could have been
the determinant or the condition number of the covariance matrix.

The minimal set of sensors required to monitor the field while
keeping the consistency of the filter over time is also related to the
minimal set of paths from a source node to a sink node in the directed
graph  of the water flows (as illustrated in the following application
example, see Fig. 8), which provides a physical interpretation of the
results. The source and sink nodes are located in the terrain’s highest
and lowest parts, respectively. Indeed, the flow of information in the
system is related to the flow of water on the land surface. Therefore,
graph connectivity is a condition to achieve practical observability.
If the water flows do not exist, there is no flow of information, and
as a consequence, it is not possible to reconstruct the states of the
unmeasured patch.

4. Case study

To illustrate the performance of the sensor location strategy, a
rugged test field is selected in the province of Samacá in the department
of Boyacá, Colombia. The size of the land is 1600 m2, and the soil is
primarily loamy with a thickness of the root zone (𝜃(𝑛)5 ) in the range of
300 mm to 600 mm. A 3D representation of the field is shown in Fig. 5,
where the normalized elevation corresponds to a difference between
the highest and the lowest altitude (i.e., a difference of about 60 m).
This representation is built by applying image processing algorithms
and a digital elevation model (DEM) (Mukherjee et al., 2013).

After selecting the field location, the next step is field discretization,
which consists of a partition based on a grid. The size of the grid
determines the number of agents. This grid is deployed over the ground
surface, and the normalized elevation of the center of every square
patch is taken as the corresponding agent elevation.

Several simulations are run to define the number of agents, con-
sidering the minimal size of grid patches of 1 × 1 m as the reference.
This minimal size of patches is intended to provide the best possible
representation of the system dynamics related to biomass production.
In this paper, after ten simulations with and without irrigation, the
average of the errors is calculated for each 𝑁 . These results are shown
in Fig. 6. For the sample square field of 400 × 400 m, a selection of
16 patches (𝑁 = 16) generates an error in biomass estimation of about
10%. For 𝑁 = 81, the error is about 5%, and for 𝑁 = 144, the error
decreases to 3%, which is acceptable.
7

Fig. 5. Digital elevation representation of the test field. The grid in red over the surface
indicates the size of agents and their projection to the 𝑥, 𝑦 plane. The number in the
corners notes the sequence of the numbering of agents.

Accepting an error in the estimation of about 3%, the ABM with
𝑁 = 144 agents is assembled and executed after collecting their
corresponding relative elevations. The agents’ tags and the graph with
water links related to the relative elevation are shown in Figs. 7 and
8, respectively. The climatic variables to feed the model are retrieved
from a meteorological station located at 4 km Northeast for the full
2018 year.

To run the model, the complementary assumptions are, that no
in- or out-flux are considered beyond the borders of the field. The
environmental inputs are available daily and the values of the vector
of parameters 𝛩 = {𝜃𝑗} with 𝑗 = 1…20, are taken from Lopez-
Jimenez et al. (2021). When an agent is selected as a sensing location
all state variables are measurable according to the assumptions given
in Section 2.1.3 and 𝑛𝑚 < 𝑁 .

4.1. Numerical results

The sensor location algorithm is tested in two different cases under
no irrigation. In the first case, the optimizer runs under no constraints
of the number of sensors, and 𝜆 is changing from 0.0001 to 100.
The economic part of the cost function is reduced to a scalar value
proportional to the number of sensors. The objective here is to set the
value of 𝜆 that provides a reasonable trade-off between quality and cost.
With a fixed 𝜆, the second case solves the optimization problem for a
set number of sensors and assesses the performance with the complete
cost function.

For practical purposes, the cost function in Eq. (22a) can be rewrit-
ten as

𝐽 = 𝐽1 + 𝜆𝐽2, (23)

where 𝐽1 represents the quality of estimation given by the trace of 𝑃 ,
and 𝐽2 stands for the cost of measurements. In the first case, i.e., when
the economic part is only related to the cost of sensors, the cost
structure becomes 𝐽2 = 𝑛𝑚𝐹𝑐 , where 𝐹𝑐 is a fixed value, independently
of the location. For the second case, the cost is as Eq. (22a). The values
for the execution of the genetic algorithm are presented in Table 2.

4.1.1. Case 1
In this case, the aim is to evaluate the influence of 𝜆 in the cost

function 𝐽 based on the trade-off between the quality of estimation
and the affordable cost of monitoring. Therefore, the GA solves the
optimization problem under no constraints. In Fig. 9, the execution
changing 𝜆 from 0.0001 to 100 is shown. A value of 𝜆 ∈ (0.01, 0.1)
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Fig. 6. Error of biomass prediction based on an average discretization of a field (a) under no irrigation; and (b) with a fixed schema of irrigation. The average of ten trials is
plotted in red.
Fig. 7. The test field from above, where the color bar indicates the relative altitude. The agents with no incoming fluxes are labeled in red (See Fig. 8).
is finally selected as it provides a balance between quality and cost.
At the top of the graph, the number of sensing locations are displayed
with respect to the corresponding value of 𝜆 in the horizontal axis.

After assessing the impact of 𝜆 in the cost function, it is relevant
to know the location of sensors in the field. Fig. 10 shows the location
of agents when 𝑛𝑚 = 14 and 𝑛𝑚 = 40. The distribution of agents when
the priority is the cost reveals clusters of sensors across the field. At
the same time, the areas where the focus is the quality of estimation
indicate a preference for locations in the highest part of the terrain and
8

broad covering. Therefore, it is suggested to locate sensors in the parts
of the terrain with fewer water interactions.

4.1.2. Case 2
In this case, the GA performance is assessed with the constraint of

the number of sensors in the field, and the goal of the optimization
problem is to focus on finding the best location for a given number of
sensors. The advantage is the consideration of a limited sensor budget.
Here, 𝐽 is as defined in Eq. (22a).
2
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Fig. 8. Digraph of the case study. The arrows in the edges denote the direction of fluxes, while the thickness reveals the relative amount of water for a complete crop cycle.
Fig. 9. Evaluation of unrestricted cost function 𝐽 for 𝜆 ∈ [0.0001, 100], where the fix
cost is given by 𝐹𝑐 = $4000.

The location results obtained for a fixed number of sensors are
shown in Fig. 11. For 𝑛𝑚 = 48 (representing a third of the possible
locations), coverage of the entire field is evidenced by an even dis-
tribution of sensing locations. When the number of sensors decreases
to 12, the sensors shift to the highest parts of the terrain. The same
situation happens when only six possible locations are considered. This
indicates spots where there is less information flow, which makes sense
given that there is no inflow to these areas except what enters through
rain and irrigation.

Additionally, two extreme cases are analyzed with one and two
sensors that support the previous conclusion. When the number of
sensors is less than 6, the consistency of the estimator is compromised.
The value of 6 agents is the limit from which the estimate is unreliable.
It is essential to highlight that the good results obtained with 𝑛 = 6
9

𝑚

Fig. 10. Sensor placement distribution over the field for 𝜆 = 0.01 and 𝜆 = 0.1, which
corresponds to 𝑛𝑚 = 40 and 𝑛𝑚 = 14, respectively. In both cases, the algorithm is run
for 4000 iterations.

Table 2
Parameters of the GA and the EKF.

Parameter Value

Population size 50
Length of chromosomes 𝑁 = 144
Crossover fraction 0.8
Elite count 2.5
Function tolerance 1e−06
Maximum generations 100
Mutation parameter 0.01
𝑘 1 day
𝑡𝑓 160
𝜎2
𝑥1

0.16 (mm2)
𝜎2
𝑥2

0.01 (◦C2)
𝜎2
𝑥3

0.01 (◦C2)
𝜎2
𝑥4

0.1225 (ton∕ha2)
𝐹𝑐 $2000
𝐶𝑜 $100 per day
𝑂𝑖 𝛾 (𝑛) × 𝐶𝑜

rely on the fact that, during more than 80% of the crop cycle, the
connectivity of the graph (given by surface water flows 𝜙(𝑛)

4 ) between
agents is preserved.
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Fig. 11. Optimal location of a given number of sensors with 𝜆 = 10.
Fig. 12. Comparison between initial and final error in water in the soil for the 144
agents.

To corroborate this, Fig. 12 shows the initial error given by the
difference between the initial condition of the water in the soil for
each of the 144 agents and the estimation value and compared with
the final error computed as the difference between the simulation of
the model and the estimation. The initial conditions for all agents are
in the range of 25%, which makes sense for the water-holding capacity
of the soil. The only agents where the final error is more significant
are those where the sensors are located since the error is calculated
concerning the last measurement, which is not necessarily close to the
estimated value.

Fig. 13 shows the initial and final biomass error produced for all
the agents, evidencing a similar conclusion as in the case of water in
the soil. Here, the initial error is set in the span of 140%. To illustrate
the temporal evolution of the estimation, a random set of four sensing
locations is chosen for water in soil and biomass (see Figs. 14 and 15).
Notice that for the sensing location of agent 12, both the amount of
water in the soil and the biomass are estimated around the value of the
measurements.
10
Fig. 13. Comparison between initial and final error in biomass for the 144 agents.

The comparative results for both cases suggest that when priority is
given to the economic objective, the sensing points are located in the
highest parts of the terrain. On the other hand, if relevancy is given to
the estimation quality, the algorithm distributes the sensing locations
over the field. As the constraint is imposed on the possible sensing
sites, the algorithm keeps selecting areas on the highest part of the
terrain where no water exchanges and water is going outside, carrying
information to agents in the lower parts. In this sense, the algorithm
keeps most of the global information. Notice that for extreme cases as
a couple of sensors, the locations are skew to high positions, but the
algorithm’s consistency is no longer preserved.

The performance of the genetic algorithm as an optimization
method can be seen in Fig. 16. The generations correspond to each
complete iteration of the algorithm, which means an entire cycle of
generating a population and applying the genetic operators such as the
selection, crossover, and mutation over such population. Additionally,
since there are integer variables, the cost function is referred to as the
penalty value.

The results indicate that the efficiency of the algorithm decreases
after 20 iterations; after that, the improvement in penalty value does
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Fig. 14. Water in soil evolution over time for four random locations.

Fig. 15. Biomass evolution over time for four random locations.

Fig. 16. Evolution of the performance of the GA towards convergence without constraints. The algorithm converges after 67 iterations.
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not change significantly. This behavior suggests two possible causes.
The first one may be that it is at a local minimum, or the second is
that the evolution of the population requires adjustments in the genetic
operators. The resulting population can be set as the initial population
for a new cycle of algorithm execution.

5. Conclusions and perspectives

In this work, a successful framework to address the problem of
sensor location has been presented. It encompasses an ABM for terrain
interpretation, an EKF to estimate the states of the areas not sensed, a
cost function that combines a factor of quality of estimation given by
the trace of the error covariance matrix and accounting for the cost of
measurements, and a strategy to solve the sensor placement problem by
a GA. The proposed solution is stable over time if the fluxes between
agents exist. Therefore the connectivity of the graph that represents the
terrain’s topography must be guaranteed.

Future work will deal with detectability under low rainfall condi-
tions leading to changes in the estimation technique and the optimiza-
tion problem.
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